A de novo metalloenzyme for cerium photoredox catalysis

29 February 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Cerium photoredox catalysis has emerged as a powerful strategy to activate molecules under mild conditions. Radical intermediates are formed using visible light and simple complexes of the earth-abundant lanthanide. However, it remains a major challenge to achieve stereocontrol in these reactions. Here, we report an artificial photoenzyme enabling this chemistry inside a protein. We utilize a de novo designed protein scaffold that tightly binds lanthanide ions in its central cavity. Upon visible-light irradiation, the cerium-dependent enzyme catalyzes the radical C–C bond cleavage of 1,2-diols in aqueous solution. Protein engineering led to variants with improved photostability and initial stereoselectivity. The photoenzyme cleaves a range of aromatic and aliphatic substrates, including lignin surrogates. Surface display of the protein scaffold on E. coli facilitates whole-cell photobiocatalysis. Furthermore, we show that also natural lanthanide-binding proteins are suitable for this approach. Our study thus demonstrates a new-to-nature enzymatic photoredox activity with broad catalytic potential.


Artificial photoenzyme
Cerium photoredox catalysis
Protein engineering
Artificial metalloenzyme
Protein Design

Supplementary materials

Supplementary material
Supplementary information


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.