Abstract
A facile synthetic strategy to prepare a new type of on-chain polyperoxide bearing intermolecular peroxy bonds is reported. Polyketone from the copolymerization of ethylene and carbon monoxide was quantitatively transformed into amorphous and powdery polyperoxide using aqueous hydrogen peroxide at room temperature. This synthetic pathway allowed the highly selective and complete conversion of carbonyl groups into intermolecular peroxy groups that can initiate free radical graft copolymerization without generating fragmentary alkoxyl radical species. The thermal properties of polyperoxide were characterized by differential scanning calorimetry and thermogravimetric analysis, and the polyperoxide was further ap-plied as a macroinitiator to prepare densely grafted copolymers, polyethylene-g-poly(4-methyl styrene) and polyethylene-g-poly(methyl methacrylate), via grafting from approach.