Enantioselective Arbuzov Reaction Enabled by Catalytic Ion-Pair Reorganization

09 February 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The stereocontrolled synthesis of stereogenic-at-phosphorus compounds is a long-standing challenge in organic chemistry that has received heightened research attention in recent years. None of the catalytic approaches taken to date have leveraged the rich manifold of transformations proceeding through nucleophilic dealkylation of phosphonium ion intermediates (e.g. Michaelis–Arbuzov, Pudovik, and Appel reactions). Here, we report enantioselective hydrogen-bond-donor-catalyzed Michaelis–Arbuzov reactions of dialkylphosphonites with hydrogen chloride to afford H-phosphinates, which are versatile P-chiral building blocks. Mechanistic and computational investigations reveal that the catalyst diminishes the reactivity of the chloride nucleophile, yet accelerates the rate-determining dealkylation step by preorganizing the phosphonium chloride resting state into a geometry that is primed to enter the SN2 transition state.

Keywords

asymmetric catalysis
phosphorus
hydrogen-bond donor catalysis

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Materials and Methods Supplementary Text Figs. S1 to S9 Tables S1 to S4 References (51–80)
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.