Terpolymerization of Elemental Sulfur Waste with Propylene Oxide and Carbon Disulfide as a Strategy where Copolymerization fails

01 February 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Elemental sulfur, a waste product of the oil refinement process, represents a promising raw material for the synthesis of degradable polymers. We show that simple lithium alkoxides facilitate the polymerisation of elemental sulfur S8 with industrially relevant propylene oxide (PO) and CS2 (a base chemical sourced from waste S8 itself) to give poly(monothiocarbonate-alt-Sx) in which x can be controlled by the amount of supplied sulfur. The in-situ generation of thiolate intermediates obtained by a rearrangement, which follows CS2 and PO incorporation, allows to combine S8 and epoxides into one polymer sequence that would otherwise not be possible. Mechanistic investigations reveal that alkyl oligosulfide intermediates from S8 ring opening and sulfur chain length equilibration represent the better nucleophiles for inserting the next PO if compared to the trithiocarbonates obtained from the competing CS2 addition, which causes the sequence selectivity. The polymers can be crosslinked in-situ with multifunctional thiols to yield reprocessable and degradable networks. Our report demonstrates how mechanistic understanding allows to combine intrinsically incompatible building blocks for sulfur waste utilisation.

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Supporting Information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.