Abstract
Herein, we report an approach for generating thionyl fluoride (SOF2) from the commodity chemicals thionyl chloride (SOCl2) and potassium fluoride (KF). The methodology relies on a microfluidic device that can efficiently produce and dose this toxic, gaseous reagent under extremely mild and safe conditions. Subsequently, the in situ generated thionyl fluoride is reacted with an array of structurally and electronically differing carboxylic acids, leading to the direct and efficient synthesis of highly sought-after acyl fluorides. Importantly, our investigation also highlights the inherent modularity of this flow-based platform. We demonstrate the adaptability of this approach by not only synthesizing acyl fluorides, but also directly converting carboxylic acids into a diverse array of valuable compounds such as esters, thioesters, amides, and ketones. This versatility showcases the potential of this approach for a wide range of synthetic applications, underscoring its significance in the realm of chemical synthesis.
Supplementary materials
Title
Supporting Information
Description
Experimental procedures, additional optimization tables, spectroscopic analysis
Actions