Digital Light 3D Printing of Double Thermoplastics with Customizable Mechanical Properties and Versatile Reprocessability

29 January 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Digital light processing (DLP) is a 3D printing technology offering high resolution and speed. Printable materials are usually based on multifunctional monomers, resulting in the formation of thermosets that cannot be reprocessed or recycled. Some efforts have been made in DLP 3D printing of thermoplastic materials. However, these materials exhibit limited and poor mechanical properties. Here, we present a new strategy for DLP 3D printing of thermoplastics using two polymers with contrasting mechanical properties, where stiff and flexible linear polymers are sequentially constructed. The inks consist of two vinyl monomers, which lead to the stiff linear polymer, and α-lipoic acid to form the flexible linear polymer via thermal ring-opening polymerization in a second step. By varying the ratio of stiff and flexible polymers, the mechanical properties can be tuned with Young's modulus ranging from 1.1 GPa to 0.7 MPa, while the strain at break increased from 4% to 574%. Furthermore, these 3D-printed thermoplastics allow for a variety of reprocessability pathways including self-healing, solvent casting, reprinting, and closed-loop recycling of the flexible polymer, contributing to the development of a sustainable materials economy. Last, we demonstrate the potential of the new material in applications ranging from soft robotics to electronics.

Keywords

additive manufacturing
sustainable polymers
self-healing
materials recycling

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.