Chemical Language Modeling with Structured State Spaces

25 January 2024, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Generative deep learning is reshaping drug design. Chemical language models (CLMs) – which generate molecules in the form of molecular strings – bear particular promise for this endeavor. Here, we introduce a recent deep learning architecture, termed Structured State-Space Sequence (S4) model, into de novo drug design. In addition to its unprecedented performance in various fields, S4 has a remarkable capability to capture the global properties of long sequences. This aspect is key for chemical language modeling, where complex molecular properties like bioactivity can 'emerge' from distant positions in the molecular strings. This observation gives rise to the following question: Can S4 advance chemical language modeling for de novo design? To provide an answer, we systematically benchmark S4 with state-of-the-art CLMs on an array of drug discovery tasks, such as the identification of bioactive compounds, and the design of drug-like molecules and natural products. S4 showed a superior capacity to learn complex molecular properties, while at the same time exploring diverse scaffolds. Finally, when applied prospectively to kinase inhibition, S4 designed eight of out ten molecules that were predicted as highly active by molecular dynamics simulations. Taken together, these findings advocate for the introduction of S4 into chemical language modeling -- uncovering its untapped potential in the molecular sciences.

Keywords

machine learning
de novo design
chemical language models

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.