Pharmaceutical Digital Design: From Chemical Structure through Crystal Polymorph to Conceptual Crystallization Process

23 January 2024, Version 1

Abstract

A workflow for the digital design of crystallization processes starting from the chemical structure of the active pharmaceutical ingredient (API) is a multi-step, multi-disciplinary process. A simple version would be to first predict the API crystal structure and from it the corresponding properties of solubility, morphology, and growth rates, assume that the nucleation would be controlled by seeding, and then use these parameters to design the crystallization process. This is usually an over-simplification as most APIs are polymorphic, and the most stable crystal of the API alone may not have the required properties for development into a drug product. This perspective, from the experience of a Lilly Digital Design project, considers the fundamental theoretical basis of crystal structure prediction (CSP), free energy, solubility, morphology and growth rate prediction, and the current state of nucleation simulation. This is illustrated by applying the modeling techniques to real examples, olanzapine and succinic acid. We demonstrate the promise of using ab initio computer modeling for solid form selection and process design in pharmaceutical development. We also identify open problems in the application of current computational modeling and achieving the accuracy required for immediate implementation that are currently limiting the applicability of the approach.

Keywords

Digital Design
Workflow
Theoretical

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.