A Reversible Four-electron Sn Metal Aqueous Battery

22 January 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Sn is a promising metal anode for aqueous batteries due to its dendrite-free plating, large hydrogen evolution overpotential, and high theoretical capacity with up to four-electron redox per Sn atom. However, practically achieving the theoretical capacity for Sn remains challenging, with only limited cell energy densities demonstrated thus far. We validate a kinetically asymmetric [Sn(OH)6]2-/Sn redox pathway involving a direct four-electron plating and a stepwise 2+2 electron stripping through a [Sn(OH)3]- intermediate, which decreases the Coulombic efficiency (CE) by shuttling to the cathode and promoting chemical self-discharge. By using ion-selective membranes to suppress [Sn(OH)3]- crossover, we demonstrate Sn-Ni full cells with high round-trip efficiency (~80%) and energy density (143.1 Wh L-1). The results provide key understandings to the tradeoffs in engineering reversible multi-electron metal anodes and define a new benchmark for practical energy density that exceeds Sn-based aqueous batteries to date.

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.