Charge regulation triggers condensation of short oligopeptides to polyelectrolytes

17 January 2024, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Electrostatic interactions between charged macromolecules are ubiquitous in bio- logical systems and they are important also in materials design. Attraction between oppositely charged molecules is often interpreted as if the molecules had a fixed charge, which is not affected by their interaction. Less commonly, charge regulation is invoked to interpret such interactions, i.e., a change of the charge state in response to a change of the local environment. Although some theoretical and simulation studies suggest that charge regulation plays an important role in intermolecular interations, experi- mental evidence supporting such view is very scarce. In the current study, we used a model system, composed of a long polyanion interacting with cationic oligolysines, containing up to 8 lysine residues. We showed using both simulations and experiments that while these lysines are only weakly charged in the absence of the polyanion, they charge up and condense on the polycations if the pH is close to the pKa of the lysine side chains. We show that the lysines coexist in two distinct populations within the same solution: 1. practically non-ionized and free in solution; 2. highly ionized and condensed on the polyanion. Using this model system, we demonstrate under what conditions charge regulation plays a significant role in the interactions of oppositely charged macromolecules and generalize our findings beyond the specific system used here.

Keywords

peptide
charge regulation
pH
acid-base
counterion condensation
polyelectrolyte

Supplementary materials

Title
Description
Actions
Title
Supporting Information: Charge regulation triggers condensation of short oligopeptides to polyelectrolytes
Description
Experimental procedures, details on simulation methods and additional results.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.