Abstract
Recently, nanostar-shaped structures, including gold nanostars (NS), have drawn much attention for their potential use in surface-enhanced Raman spectroscopy (SERS) and catalysis. Yet, very few studies have been conducted on Cu-Au hybrid NS, and there are none for Cu-based NS. Herein, we describe an effective method for controlling copper oxide nanostar (ESP-PEI-CuI/IIO-NS) growth using sporopollenin as a sustainable template material. However, ESP-PEI-CuI/IIO-NS growth depends on sporopollenin surface functionalization. Sporopollenin surface activation was done by amine functionalization with polyethyleneimine (PEI), without which ESP-PEI-CuI/IIO-NS growth was not observed. The sporopollenin’s exine (outer wall) has bowl-like structures, which mediates the growth of Cu nanorods, resulting in an NS morphology. Furthermore, due to their increased surface area, ESP-PEI-CuI/IIO-NS showed excellent catalytic activity for Huisgen 1,3-dipolar cycloadditions even when used in H2O and without additives under greener conditions. This approach utilising biomass as a sustainable template would pave the way for developing controlled growth of nanostructures for SERS-related and catalytic applications.
Supplementary materials
Title
Supplementary materials
Description
The supporting material contains general information and instrumentation, an experimental section, characterization of the catalyst, and spectral details of products.
Actions