Abstract
The tert-butyl group is a common aliphatic motif extensively employed to implement steric congestion and conformational rigidity in organic and organometallic molecules. Because of the combination of a high bond dissociation energy (~ 100 kcal mol-1) and limited accessibility, in the absence of directing groups, neither radical nor organometallic approaches are effective for the chemical modification of tert-butyl CH bonds. Herein we overcome these limits by employing an electron-poor manganese catalyst that operates in the strong hydrogen bond donor solvent nonafluoro-tert-butyl alcohol (NFTBA) and catalytically activates hydrogen peroxide to generate a powerful manganese-oxo species that effectively oxidizes tert-butyl C−H bonds. Leveraging on the interplay of steric, electronic, medium and torsional effects, site-selective and product chemoselective hydroxylation of the tert-butyl group is accomplished with broad reaction scope, delivering primary alcohols as largely dominant products in preparative yields. Late-stage hydroxylation at tert-butyl sites is demonstrated on 6 densely functionalized molecules of pharmaceutical interest. This work uncovers a novel disconnection approach, harnessing tert-butyl as a potential functional group in strategic synthetic planning for complex molecular architectures.
Supplementary materials
Title
Suplementary information file
Description
Full details on experimental procedures
Actions