Giant Band Degeneracy via Orbital Engineering Enhances Thermoelectric Performance from Sb2Si2Te6 to Sc2Si2Te6

09 January 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


The complex interrelationships among thermoelectric parameters mean that a priori design of high-performing materials is difficult. However, band engineering can allow the power factor to be optimized through enhancement of the Seebeck coefficient. Herein, using layered Sb2Si2Te6 and Sc2Si2Te6 as model systems, we comprehensively investigate and compare their thermoelectric properties by employing density functional theory combined with semiclassical Boltzmann transport theory. Our simulations reveal that Sb2Si2Te6 exhibits superior electrical conductivity compared to Sc2Si2Te6 due to lower scattering rates and more pronounced band dispersion. Remarkably, despite Sb2Si2Te6 exhibiting a lower lattice thermal conductivity, the introduction of Sc-d orbitals dramatically increases conduction band degeneracy in Sc2Si2Te6, yielding a significantly improved Seebeck coefficient relative to Sb2Si2Te6. As a result, Sc2Si2Te6 is predicted to achieve an extraordinary dimensionless figure of merit (ZT) of 3.51 at 1000 K, which significantly surpasses the predicted maximum ZT of 2.76 for Sb2Si2Te6 at 900 K. This work suggests that engineering band degeneracy through compositional variation is an effective strategy for improving the thermoelectric performance of layered materials.


layered thermoelectric materials
band degeneracy
enhanced seebeck coefficient
first-principles calculation
momentum relaxation time approximation

Supplementary materials

Supporting information
Input parameters, competing phases, convergence and additional transport graphs

Supplementary weblinks


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.