Using test-time augmentation to investigate explainable AI: inconsistencies between method, model and human intuition

03 January 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Stakeholders of machine learning models desire explainable artificial intelligence (XAI) to produce human-understandable and consistent interpretations. In computational toxicity, augmentation of text-based molecular representations has been used successfully for transfer learning on downstream tasks. Augmentations of molecular representations can also be used at inference to compare differences between multiple representations of the same ground-truth. In this study, we investigate the robustness of eight XAI methods using test-time augmentation for a molecular-representation model in the field of computational toxicity prediction. We report significant differences between explanations for different representations of the same ground-truth, and show that randomized models have similar variance. We hypothesize that text-based molecular representations in this and past research reflect tokenization more than learned parameters. Furthermore, we see a greater variance between in-domain predictions than out-of-domain predictions, indicating XAI measures something other than learned parameters. Finally, we investigate the relative importance given to expert-derived structural alerts and find similar importance given irregardless of applicability domain, randomization and varying training procedures. We therefore caution future research to validate their methods using a similar comparison to human intuition without further investigation.

Keywords

ML
XAI
robustness
test-time augmentation
interpretation
representation learning
explainability

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.