Solid-state 183W NMR spectroscopy as a high-resolution probe of polyoxotungstate structures and dynamics

03 January 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Polyoxometalates such as ammonium paratungstate (APT) are an important class of metal oxides with applications for catalysis, (opto)electronics, and functional materials. Structural analyses of solid polyoxometalates mostly rely on X-ray or neutron diffraction techniques, which are limited to compounds that can be isolated with long-range crystallographic order. While 183W NMR has been shown to probe polyoxotungstate structures and dynamics in solution, its application to solids has been extremely limited. Here, state-of-the-art methods for the detection of solid-state 183W NMR spectra are tested and compared for APT in different hydration states. The highly resolved solid-state spectra distinguish each crystallographically distinct site in the tungstate structure. Furthermore, the 183W chemical shifts are shown to be highly sensitive to the local structure, dynamics, and symmetry of APT, establishing solid-state 183W NMR spectroscopy as a potent probe for analysis of polyoxotungstates and other tungsten-derived materials to complement solution NMR and diffraction-based techniques.


solid-state NMR spectroscopy

Supplementary materials

Supporting information
Experimental section, crystallographic data, and additional NMR data.


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.