Machine Learning Guided AQFEP: A Fast & Efficient Absolute Free Energy Perturbation Solution for Virtual Screening

22 December 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Structure-based methods in drug discovery have become an integral part of the modern drug discovery process. The power of virtual screening lies in its ability to rapidly and cost-effectively explore enormous chemical spaces to select promising ligands for further experimental investigation. Relative Free Energy Perturbation (RFEP) and similar methods are the gold standard for binding affinity prediction in drug discovery hit-to-lead and lead optimization phases, but have high computational cost and the requirement of a structural analog with a known activity. Without a reference molecule requirement, Absolute FEP (AFEP) has, in theory, better accuracy for hit ID, but in practice, the slow throughput is not compatible with VS, where fast docking and unreliable scoring functions are still the standard. Here, we present an integrated workflow to virtually screen large and diverse chemical libraries efficiently, combining active learning with a physics-based scoring function based on a fast absolute free energy perturbation method. We validated the performance of the approach in the ranking of structurally related ligands, virtual screening hit rate enrichment, and active learning chemical space exploration; disclosing the largest reported collection of free energy simulations to date.


free energy perturbation
active learning
virtual screening
hit finding
drug discovery
absolute free energy perturbation
molecular docking


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.