Aqueous Electrochemical and pH Studies of Redox-Active Guanidino Functionalized Aromatics for CO2 Capture

15 December 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Escalating levels of carbon dioxide (CO2) in the atmosphere have motivated interest in CO2 capture and concentration from dilute streams. A guanidino-functionalized aromatic 1,4-bis(tetramethylguanidino)benzene (1,4-btmgb) was evaluated both as a redox-active sorbent and pH swing mediator for electrochemical CO2 capture and concentration. Spectroscopic and crystallographic studies demonstrate that 1,4-btmgb reacts with CO2 in water to form 1,4-btmgbH2(HCO3–)2. The product suggests that 1,4-btmgb could be used in an aqueous redox pH swing cycle for the capture and concentration of CO2. The synthesis and characterization of the mono- and di-protonated forms (1,4-btmgbH+ and 1,4-btmgbH22+) and their pKa values were measured to be 13.5 and 11.0 in water, respectively. Electrochemical pH swing experiments indicate the formation of an intermediate radical species and other degradation pathways, which ultimately inhibited fully reversible redox-induced pH cycling.

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Experimental methods, NMR spectra, electrochemical data
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.