Abstract
The migration of atoms and small clusters is an important process in sub-nanometre scale heterogeneous catalysis, affecting activity, accessibility and deactivation through sintering. Control of migration can be partially achieved via encapsulation of sub-nanometre metal particles into porous media such as zeolites. However, a general understanding of the migration mechanisms and their sensitivity to particle size and framework environment is lacking. Here, we extend the time-scale and sampling of atomistic simulations of platinum cluster diffusion in siliceous zeolite frameworks, by introducing a reactive neural network potential of density functional quality. We observe that Pt atoms migrate in a qualitatively different manner from clusters, occupying the dense region of the framework and avoiding the free pore space. We also find that for cage-like zeolite CHA there exists a maximum in self diffusivity for the Pt dimer beyond which, confinement effects hinder intercage migration. By extending the quality of sampling, NNP-based methods allow for the discovery of novel dynamical processes at the atomistic scale, bringing modelling closer to operando experimental characterization of catalytic materials.
Supplementary materials
Title
ESI
Description
Electronic Supporting Information containing MLP verification tests, kinetic data from migration simulations, isosurfaces from Pt cluster dynamics and collective variable definitions.
Actions