Importance of Site Diversity and Connectivity in Electrochemical CO Reduction on Cu

18 December 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Electrochemical CO2 reduction on Cu is a promising approach to produce value-added-chemicals using renewable feedstocks, yet various Cu preparations have led to differences in activity and selectivity towards single and multi-carbon products. Here, we find, surprisingly, that the effective catalytic activity towards ethylene improves when there is a larger fraction of less active sites acting as reservoirs of *CO on the surface of Cu nanoparticle electrocatalysts. In an adaptation of chemical transient kinetics to electrocatalysis, we measure the dynamic response of a gas diffusion electrode (GDE) cell when the feed gas is abruptly switched between Ar (inert) and CO. When switching from the Ar to CO, CO reduction (COR) begins promptly, but when switching from CO to Ar, COR can be maintained for several seconds (delay time), despite the absence of the CO reactant in the gas phase. A three-site microkinetic model captures the observed dynamic behavior and shows that Cu catalysts exhibiting delay times have a less active *CO reservoir that exhibits fast diffusion to active sites. The observed delay times and the estimated *CO reservoir sizes are affected by catalyst preparation, applied potential, and microenvironment (electrolyte cation identity, electrolyte pH, and CO partial pressure). Notably, we estimate that the *CO reservoir surface coverage can be as high as 88±7% on oxide-derived (OD-Cu) at high overpotentials (-1.52 V vs. SHE) and that increases in reservoir coverage coincide with increased turnover frequencies to ethylene. We also estimate that *CO can travel substantial distances (up to 10s of nm) prior to desorption or reaction. It appears that active C-C coupling sites, by themselves, do not control selectivity to C2+ products in electrochemical COR; the supply of CO to those sites is also a crucial factor. More generally, the overall activity of Cu electrocatalysts cannot be approximated from linear combinations of individual site activities. Future designs must consider the diversity of the catalyst network and account for inter-site transportation pathways.

Keywords

electrocatalysis
chemical transient kinetics
CO reduction
microkinetic modelling

Supplementary materials

Title
Description
Actions
Title
Supporting Information for Importance of Site Diversity and Connectivity in Electrochemical CO Reduction on Cu
Description
Structural and electrochemical characterization and analytical chemistry, gas feed switching, measurement of mass flow, time resolution, experimental measurement of delay time and transition time, turnover frequency calculation, microkinetic model, diffusion distances calculation, supplemental tables, supplemental figures, supplemental references.
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.