Deciphering the Interplay Between Local and Global Dynamics of Anodic Metal Oxidation

24 November 2023, Version 3
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The stark difference between global and local metal oxidation dynamics underscores the need for methodologies capable of performing precise sub-μm-scale and wide-field measurements. In this study, we present Reflective Microscopy as a tool developed to address this challenge, illustrated by the example of chronoamperometric Fe oxidation in NaCl solution. Analysis at a local scale of 10s of μm has revealed three distinct periods of Fe oxidation: the initial covering of the metal interface with a surface film, followed by the electrochemical conversion of the formed surface film, and finally, the in-depth oxidation of Fe. In addition, thermodynamic calculations and the quantitative analysis of changes in optical signal (light intensity), correlated with variations in refractive indexes, suggests the initial formation of maghemite, followed by its subsequent conversion to magnetite. The reactivity maps for all three periods are heterogeneous, which can be attributed to the preferential oxidation of certain crystallographic grains. Notably, at the global scale of 100s of μm, reactivity initiates at the electrode border and progresses towards its center, demonstrating a unique pattern that is independent of local metal structure. This finding underscores the significance of simultaneously employing sub-μm-precise, quantitative and wide-field measurements for a comprehensive description of metal oxidation processes.

Keywords

opto-electrochemistry
corrosion

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.