Ruthenium polyhydrides supported by rigid PCP pincer ligands: dynamic behaviour and reactions with CO2

23 November 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Two rigid beta-elimination immune PCcarbeneP pincer ligands, differing in their electron donor properties by variation of the substitution pattern on the aromatic linker arms, were complexed to ruthenium to form the dichlorides LRRuCl2 (R = H or NMe2). These compounds were converted to hydrido chlorides by treatment with dihydrogen (H2) and a base. By converting to tert-butoxide derivatives in situ under an atmosphere of H2, the poly hydride PCalkylP complexes LHRRu(H)3 compounds were generated. In these complexes, H2 has added across the Ru=C bond in the PCcarbeneP starting materials. The polyhydrides are dynamic in solution and extensive NMR studies helped to elucidate the speciation and fluxional processes operative in this dynamic system. The polyhydride complexes react rapidly with CO2 to give the PCcarbeneP formato hydride complexes LRRu(H)-kappa-2-O2CH. For R = H, the 1,2-hydride shift from the anchoring alkyl of the PCalkylP carbon to the metal is reversible, but for R = NMe2 it is irreversible. The CO2 incorporated into the formato ligand of these compounds exchanges with free CO2 via a bimolecular mechanism that is more rapid for R = NMe2 than for R = H; plausible explanations for this observation are proffered. Experiments designed to evaluate the efficacy of the R = NMe2 formato hydride complex as a catalyst precursors for CO2 hydrogenation to formate salts reveal poor performance in comparison to state-of-the-art ruthenium-based catalysts. This is due primarily to the precipitation of a dimeric kappa-2-kappa1-CO3 carbonate complex that is not an active catalyst for the reaction.

Keywords

ruthenium
hydrides
pincer ligands
carbon dioxide
fluxionality

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.