An Anode-Free Sodium All-Solid-State Battery

21 November 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Anode-free batteries possess the optimal cell architecture due to their reduced weight, volume, and cost. However, their implementation has been limited by unstable anode morphological changes and anode-liquid electrolyte interface reactions. An electrochemically stable solid electrolyte can solve these issues by enabling the deposition of dense sodium metal. Furthermore, a novel type of aluminum current collector can achieve intimate solid-solid contact with the solid electrolyte which allows highly reversible sodium plating and stripping at both high areal capacities and current densities, previously unobtainable with conventional aluminum foil. A sodium anode-free all-solid-state battery full-cell is demonstrated with stable cycling for several hundred cycles. This cell architecture serves as a future direction for other battery chemistries to enable low-cost, high-energy-density, and fast charging batteries.


Current Collector


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.