Materials Genes of CO2 Hydrogenation on Supported Cobalt Catalysts: an AI Approach Integrating Theoretical and Experimental Data

17 November 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Designing materials for catalysis is challenging because the performance is governed by an intricate interplay of various multi-scale phenomena, such as chemical reactions on surfaces and the materials’ restructuring during the catalytic process. In the case of supported catalysts, the role of the support material can be also crucial. Here, we address this intricacy challenge by a symbolic-regression artificial-intelligence approach. We identify the key physicochemical parameters correlated with the measured performance, out of many offered candidate parameters characterizing the material, reaction environment, and possibly relevant underlying phenomena. Importantly, these parameters are obtained by both experiments and ab initio simulations. The identified key parameters might be called “materials genes”, in analogy of genes in biology: they correlate with the property or function of interest, but the explicit physical relationship is not (necessarily) known. To demonstrate the approach, we investigate CO2 hydrogenation to CH3OH catalyzed by cobalt nanoparticles supported on silica. Crucially, the silica support is modified with the additive metals magnesium, calcium, titanium, aluminum, and zirconium, which results in six materials with significantly different performances. These systems mimic hydrothermal vents, which might have produced the first organic molecules on Earth. The key parameters correlated with the CH3OH selectivity reflect the reducibility of cobalt species, adsorption strength of reaction intermediates, and the chemical nature of the additive metal. By using SISSO model trained on elemental properties of the additive metals (e.g., ionization potential), new additives are suggested. The predicted CH3OH selectivity of catalysts with vanadium and zinc was confirmed by new experiments.


Artificial Intelligence
CO2 hydrogenation
Heterogeneous catalysis
Support effect


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.