Dicationic Acridinium/Carbene Hybrids as Strongly Oxidizing Photocatalysts

14 November 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

A new design concept for organic, strongly oxidizing photocatalysts is described based upon dicationic acridinium/carbene hybrids. A highly modular synthesis of such hybrids is presented and the dications are utilized as novel, tailor-made photoredox catalysts in the direct oxidative C−N coupling. Under optimized conditions, benzene and even electron-deficient arenes can be oxidized and coupled with a range of N-heterocycles in high to excellent yields with a single low-energy photon per catalytic turnover, while commonly used acridinium photocatalysts are not able to perform the challenging oxidation step. In contrast to traditional photocatalysts, the here reported hybrid photocatalysts feature a reversible two-electron redox system with regular or inverted redox potentials for the two-electron transfer. The different oxidation states could be isolated and structurally characterized supported by NMR, EPR and X-ray analysis. Mechanistic experiments employing time-resolved emission and transient absorption spectroscopy unambiguously reveal the outstanding excited-state oxidation potential of our best-performing catalyst (+2.5 V vs. SCE) and they provide evidence for mechanistic key steps and intermediates.

Keywords

Oxidative photocatalysis
arene oxidation
acridinium
organic redox-systems
superoxidants

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Contains Supporting Information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.