Saccharide concentration prediction from proxy sea surface microlayer samples analyzed via infrared spectroscopy and quantitative machine learning

06 November 2023, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The physical and chemical properties of the sea surface microlayer (SSML) are dynamic and complex. With an enrichment of organics from dissolved organic carbon (DOC) and many mechanisms for their release into the atmosphere, high-throughput analysis of SSML samples is necessary. Collection of more detailed information about the SSML would enable greater understanding of the release of ice nucleating and cloud condensation particles and provide critical feedback for climate models. The work presented herein details an investigation to develop machine learning (ML) methodology utilizing infrared spectroscopy data to accurately estimate saccharide concentrations in complex solutions. We evaluated several machine learning approaches toward this goal. Support Vector Regression (SVR) models are shown to predict the accurate generalized saccharide concentrations best. Our work presents an application combining fast spectroscopic techniques with ML to analyze SSML chemistry more efficiently, without sacrificing accuracy or precision.

Keywords

ocean
sea surface microlayer
sea surface water
ocean monitoring
analytical spectroscopy

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.