A dual photobase system for directing the pathway of pH-sensitive chemical reactions with light

01 November 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Light-gated chemical reactions allow spatial and temporal control of chemical processes. Here, we suggest a new system for controlling pH-sensitive processes with light using two photobases of Arrhenius and Brønsted types. Only after light excitation do Arrhenius photobases undergo hydroxide ion dissociation, while Brønsted photobases capture a proton. However, none can be used alone to reversibly control pH due to the limitations arising from excessively fast or overly slow photoreaction timescales. We show here that combining the two types of photobases allows light-triggered and reversible pH control. We show an application of this method in directing the pH-dependent reaction pathways of the organic dye Alizarin Red S simply by switching between different wavelengths of light, i.e., irradiating each photobase separately. The concept of a light-controlled system shown here of a sophisticated interplay between two photobases can be integrated into various smart functional and dynamic systems.


Dynamic networks
Alizarin Red S
Malachite green carbinol base

Supplementary materials

Supporting Information
Supporting Figures and Tables


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.