Triple-photoinduced electron transfer (tri-PET) catalysis for activation of super strong bonds

01 November 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Single electron redox processes allow the formation of highly reactive radicals – valuable intermediates that enable unique transformations in organic chemistry (1,2). An established concept to create radical intermediates is photoexcitation of a catalyst to a higher energy intermediate, subsequently leading to a photoinduced electron transfer (PET) with a reaction partner (3–7). The known concept of consecutive photoinduced electron transfer (con PET) leads to catalytically active species even higher in energy by the uptake of two photons (8). This process has already been used widely for catalytic reductions; however, limitations towards strong bonds and electron rich substrates remain (9,10). Generally speaking, increased photon uptake leads to a more potent reductant. Here, we introduce triple-photoinduced electron transfer catalysis, termed tri-PET, enabled by the three-photon uptake of a dye molecule leading to an excited dianionic super-reductant which is more potent than Li metal (11) – one of the strongest chemical reductants known. Irradiation of the metal-free catalyst by violet light enables the cleavage of strong carbon-fluoride bonds and reduction of other halides even in very electron-rich substrates. The resulting radicals are quenched by hydrogen atoms or engaged in carbon-carbon and carbon-phosphorus bond formations, highlighting the utility of tri-PET for organic chemistry. Thorough spectroscopic, chemical and computational investigations are presented to understand this novel mode of photoredox catalysis. The existence of the dianion which takes up a third photon when irradiated was proven by X-ray diffraction analysis.

Keywords

tri-PET
con-PET
Photoredox
Radical Chemistry
Hydrodehalogenation
C-F Bond Activation
Super Reductants

Supplementary materials

Title
Description
Actions
Title
Supplementary Materials
Description
Description of all experiments, computational data, copy of spectra
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.