Demonstrating Scale-Up of a Novel Water Treatment Process using Super-Bridging Agents

30 October 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Fiber-based materials have emerged as a promising option to increase the efficiency of water treatment plants while reducing their environmental impacts, notably by reducing the use of unsustainable chemicals and the size of the settling tank. Cellulose fiber-based super-bridging agents are sustainable, reusable, and versatile materials that considerably improve floc separation in conventional settling tanks or via alternative screening separation methods. In this study, the effectiveness of fiber-based materials for wastewater treatment was evaluated at lab-scale (0.25 L) and at pilot-scale (20 L) for two separation methods, namely settling and screening. For the fiber-based method, the performance of floc separation during settling was slightly affected by an 80x upscaling factor. A small decrease in turbidity removal from 93 and 86 % was observed for the jar and pilot tests, respectively, suggesting that fiber-based super-bridging agents could be implemented in full-scale water treatment plants. By contrast, the turbidity removal of the conventional treatment, i.e., no fibers with a settling separation, was largely affected by the upscaling with a decrease in turbidity removal from 84 to 49 %, for jar and pilot tests, respectively. The tested fibers increase the robustness of treatment by providing better floc removal than conventional treatment under several challenging conditions such as low settling time and screening with coarse screen mesh size. Furthermore, at both lab-scale and pilot-scale, the use of fiber-based materials reduced the demand for coagulant and flocculant, potentially lowering the operational costs of water treatment plants and reducing the accumulation of metal-based coagulants and synthetic polymers in sludge. Acute toxicity tests using the model organism Daphnia magna show that the cellulose fibers introduce insignificant toxicity at the optimized fiber concentration.

Keywords

water treatment
floc removal
cellulose
separation methods
screening
settling

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.