Accelerated Electrophotocatalytic C(sp3)‒H Heteroarylation Enabled by an Efficient Continuous-Flow Reactor

20 October 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Electrophotocatalytic transformations are garnering attention in organic synthesis, particularly for accessing reactive intermediates under mild conditions. Moving these methodologies to continuous-flow systems, or flow ElectroPhotoCatalysis (f-EPC), showcases potential for scalable processes due to enhanced irradiation, increased electrode surface, and improved mixing of the reaction mixture. Traditional methods sequentially link photochemical and electrochemical reactions, using flow reactors connected in series, yet struggle to accommodate reactive transient species. In this study, we introduce a new flow reactor concept for electrophotocatalysis (EPC) that simultaneously utilizes photons and electrons. The reactor is designed with a transparent electrode and employs cost-effective materials. We used this technology to develop an efficient process for electrophotocatalytic heteroarylation of C(sp3)–H bonds. Importantly, the same setup can also facilitate purely electrochemical and photochemical transformations. This reactor represents a significant advancement in electrophotocatalysis, providing a framework for its application in flow for complex synthetic transformations.


flow chemistry
synthetic methodology
reactor design
CN bond formation

Supplementary materials

Supporting Information
Experimental procedures, spectroscopical analysis, reactor design, etc.


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.