Conformational Source of Comonomer Sequence-Dependent Copolymer Glass-Transition Temperatures

20 October 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

This brief review addresses the source of the dependence of copolymer glass transition temperatures (Tgps) on their comonomer sequences. Here we show that a comparison of the conformational entropies obtained from the Rotational Isomeric State (RIS) conformational models of the poly-A and poly-B homopolymers and their resultant poly-A/B co-polymers, i.e., ΔSconf = (XASA + XBSB) - SA/B (X = comonomer fraction), can be used to predict/understand the Tgps of copolymers. For copolymers with ΔSconf ~ 0, we expect their Tgps to follow Fox behavior and to depend only on copolymer composition, because of the similar conformational flexibilities of the A and B homo- and A/B-copolymers. When the conformational entropy ΔSconf is negative the A/B copolymer is assumed more flexible than the weighted sum of polymer-A and polymer-B conformational entropies, resulting in Tgps that are lower than expected from the Fox equation. Conversely, a positive ΔSconf suggests the copolymer’s lower flexibility, resulting in higher Tgps than expected from the Fox relation. We use the successful comparison of the observed dependence of numerous copolymer Tgps to demonstrate the validity of using their calculated RIS conformational entropies to predict their comonomer sequence dependencies.

Keywords

Comonomer Sequence
Conformational Entropy
Copolymer
Fox equation
Glass-Transition Temperature
Rotational Isomeric State

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.