Thioimidate Solutions to Thioamide Problems during Peptide Synthesis

18 October 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Thioamides have structural and chemical similarity to peptide bonds, and therefore offer valuable insights when probing peptide backbone interactions, including hydrogen bonding, stereoelectronic, and hydrophobicity effects. There is a perception that methods to install thioamides within peptides are sufficient, yet anecdotal reports indicate that many labs have sought to employ thioamides in a variety of studies but the results of many synthetic campaigns do not yield the intended products, leading researchers to abandon such projects and any information these structural probes would provide. We catalogue and provide evidence for the major pitfalls associated with current methods to synthesize thioamide-containing peptides during each stage of solid-phase peptide synthesis (SPPS), including (A) thioamide coupling, (B) peptide elongation, and (C) peptide cleavage from resin. We then demonstrate the utility of thioimidate protecting groups as a means to side-step each of these problematic synthetic difficulties. Our approach is generally applicable to all peptides and ultimately permits access to an important benchmark $\alpha$-helical peptide that had previously eluded synthesis and isolation. With the process of thionopeptide synthesis demystified, a broader range of researchers should find it easier to employ thioamides in the study of peptide-based biomolecules.

Keywords

peptide
thioamide
spps
thioimidate

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.