A Molecular Cu Electrocatalyst Escalates Ambient Perfluorooctanoic Acid Degradation

06 October 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Groundwater reservoirs contaminated with per- and polyfluoroalkyl substances (PFASs) need purifying remedies. Perfluorooctanoic acid (PFOA) is the most abundant PFAS in drinking water. Although different degradation strategies for PFOA have been explored, none of them disintegrates the PFOA backbone rapidly under mild conditions. Herein, we report a molecular copper electrocatalyst that assists in the degradation of PFOA up to 93% with 99% defluorination rate within 4 h of cathodic controlled-current electrolysis. The current-normalized pseudo-first-order rate constant has been estimated to be quite high for PFOA decomposition (3.32 L h–1 A–1), indicating its fast degradation at room temperature. Furthermore, comparatively rapid decarboxylation over the first 2 h of electrolysis has been suggested to be the rate-determining step in PFOA degradation. The related Gibbs free energy of activation has been calculated as 22.6 kcal/mol based on the experimental data. In addition, we did not observe the formation of short-alkyl-chain PFASs as byproducts that are typically found in chain-shortening PFAS degradation routes. Instead, free fluoride (F–), trifluoroacetate (CF3COO–), trifluoromethane (CF3H), and tetrafluoromethane (CF4) were detected as fragmented PFOA products along with the evolution of CO2 using gas chromatography (GC), ion chromatography (IC), and gas chromatography-mass spectrometry (GC-MS) techniques, suggesting comprehensive cleavage of C–C bonds in PFOAs. Hence, this study presents an effective method for rapid degradation of PFOA into small ions/molecules.


C–F activation
Cu electrocatalyst
PFOA degradation

Supplementary materials

Supporting Information
Experimental details, electrochemical and spectroscopy data are included.


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.