Abstract
Plasmonic metal nanoclusters are widely used in chemistry, nanotechnology, and biomedicine. In metal nanocluster dimers, coupling of the plasmons leads to the emergence of two distinct types of modes: (1) bonding dipole plasmons (BDP), which occurs when charge oscillates synchronously within each nanocluster, and (2) charge transfer plasmons (CTP), which occurs when charge oscillates between two conductively linked nanoclusters. Although TDDFT-based modeling has uncovered some trends in these modes, it is computationally expensive for large dimers, and quantitative analysis is challenging. Here, we demonstrate that the semiempirical quantum mechanical method INDO/CIS produces trends comparable to those seen in TDDFT and enables us to quantify the CTP character of each excited state. In end-to-end Ag nanowire dimers, the longitudinal states have CTP character that decreases with increasing gap distance and nanowire length. In side-by-side dimers, the transverse states have CTP character, and the larger spatial overlap means that the CTP character is larger than in the end-to-end dimers, particularly for the longer nanowires. In side-by-side dimers where one nanowire is shifted along the length of the other, the CTP character of the longitudinal states peaks when the dimer is shifted by two Ag-Ag bond lengths, while the transverse states show decreasing CTP character as displacement increases. Our study demonstrates that INDO is capable of modeling metal nanocluster dimers at a low computational cost, making it possible to study larger dimers that are difficult to analyze using TDDFT.
Supplementary materials
Title
Supporting Information
Description
Decomposition of excited states into pure transitions.
Actions