Abstract
The chemical bond is the cornerstone of chemistry, providing a conceptual framework to understand and predict the behavior of molecules in complex systems. However, the fundamental origin of chemical bonding remains controversial, and has been responsible for fierce debate over the past century. Here we present a unified theory of bonding, using a separation of electron delocalization effects from orbital relaxation to identify four mechanisms – node-induced electron confinement, Pauli repulsion, orbital contraction and polarization – that each modulate kinetic energy during bond formation. Through analysis of a series of archetypal bonds, we show that electron delocalization is not the universal driving force for bonding. Instead, an exquisite balance of delocalizing and localizing effects are dictated simply by atomic electron configurations, nodal structure and electronegativities. The utility of this unified bonding theory is demonstrated by its application to explain observed trends in bond strengths throughout the periodic table, including main group and transition metal elements.
Supplementary materials
Title
Supporting Information
Description
PDF containing additional computational details, discussion of conflicting models, and supplementary figures.
Actions
Title
Raw data for computed curves
Description
Excel sheet containing computed data necessary to reproduce all curves shown in the main text and supporting information.
Actions