Identification and quantification of fluorinated polymers in consumer products by combustion ion chromatography and pyrolysis-gas chromatography-mass spectrometry

26 September 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Total fluorine was determined in 44 consumer product samples from the Swedish market which were either suspected or known to contain fluorinated polymers. Product categories included cookware (70-550 000 ppm F), textiles (10-1600 ppm F), electronics (20-2100 ppm F), and personal care products (10-630 000 ppm F). To confirm that the fluorine was organic in nature, and deduce structure, a qualitative pyrolysis-gas chromatography-mass spectrometry (pyr-GC/MS) method was validated using a suite of reference materials. When applied to samples with unknown PFAS content, the method was successful at identifying polytetrafluoroethylene in cookware, dental products, and electronics at concentrations as little as 0.1-0.2 wt%. It was also possible to distinguish between 3 different side-chain fluorinated polymers in textiles. Several products appeared to contain high levels of inorganic fluorine. This is one of the few studies to quantify fluorine in a wide range of consumer plastics and provides important data on the concentration of fluorine in materials which may be intended for recycling, along with insights into the application of pyr-GC/MS for structural elucidation of fluorinated polymers in consumer products.


polymeric PFAS
combustion ion chromatography
total fluorine
dental products

Supplementary materials

Supporting Information for the manuscript
The document contains additional Figures regarding data analysis and measurements performed, as well as a short description on how the textile samples were prepared.


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.