Revisiting the Bonding Evolution Theory: A Fresh Perspective on the Ammonia Pyramidal Inversion and Bond Dissociations in Ethane and Borazane

26 September 2023, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

This work offers a comprehensive and fresh perspective on the bonding evolution theory (BET) framework, originally proposed by Silvi and collaborators [J. Phys. Chem. A, 1997, 101, 7277–7282]. By underscoring Thom’s foundational work, we identify the parametric function characterizing bonding events along a reaction pathway through a three-step sequence to establish such association rigorously, namely: (a) computing the determinant of the Hessian matrix at all potentially degenerate critical points, (b) computing the relative distance between these points, and (c) assigning the unfolding based on these computations and considering the maximum number of critical points for each unfolding. In-depth examination of the ammonia inversion and the dissociation of ethane and ammonia borane molecules yields a striking discovery: no elliptic umbilic flag is detected along the reactive coordinate for any of the systems, contradicting previous reports. Our findings indicate that the core mechanisms of these chemical reactions can be understood using only two folds, the simplest polynomial of Thom's theory, leading to considerable simplification. In contrast to previous reports, no signatures of the elliptic umbilic unfolding were detected in any of the systems examined. This finding dramatically simplifies the topological rationalization of electron rearrangements within the BET framework, opening new approaches for investigating complex reactions.

Keywords

Bonding evolution theory (BET)
gas-phase reactions
Hessian matrix
thermochemistry
Thom’s elementary catastrophes and universal unfoldings

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.