Abstract
Pulsed laser ablation in liquid (LAL) is a method for synthesizing nanoparticles with controlled composition and high purity. However, current research predominantly examines isolated cavitation bubbles, overlooking real-world LAL scenarios where numerous bubbles interact simultaneously. This study addresses this gap by investigating the effects of short-range micrometric spatially controlled double-pulse laser ablation in liquids on nanoparticle size distribution. Gold and YAG are used as model materials, and a dimensionless parameter, H*, is introduced to quantify the ratio between double bubble spatial separation and their maximum height. This parameter correlates with cavitation bubble merging time, bubble volume change rate, and subsequent nanoparticle size increase. Shadowgraphs provide valuable insights into bubble contact and fusion dynamics, showcasing phase separation by a thin water film and subsequent merging into a single bubble. Notably, a two-fold increase in nanoparticle size is observed for both Au and YAG at H* = 0.25. Our research indicates a strong association between nanoparticle size trends and cavitation bubble volume rate change, particularly emphasized at H* = 0.25. Understanding the dynamics of neighboring bubbles during LAL emphasizes the relevance of lateral pulse distances in dual-beam LAL, impacting particle size distribution in a distance-dependent manner.