Catalyst Engineering for the Selective Reduction of CO2 to CH4; A First-Principles Study on X-MOF-74 (X = Mg, Mn, Fe, Co, Ni, Cu, Zn)

26 September 2023, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The conversion of carbon dioxide (CO2) into more valuable chemical compounds represents a critical objective for addressing environmental challenges and advancing sustainable energy sources. The CO2 reduction reaction (CO2RR) holds promise for transforming CO2 into versatile feedstock materials and fuels. Leveraging first-principles methodologies provides a robust approach to evaluate catalysts and steer experimental efforts. In this study, we examine the CO2RR process using a diverse array of representative cluster models derived from X-MOF-74 (where X encompasses Mg, Mn, Fe, Co, Ni, Cu, or Zn) through first-principles methods. Notably, our investigation highlights the Fe-MOF-74 cluster's unique attributes, including favorable CO2 binding and the lowest limiting potential of the studied clusters for converting CO2 to methane (CH4) at 0.32 eV. Our analysis identified critical factors driving the selective CO2RR pathway, enabling the formation CH4 on the Fe-MOF-74 cluster. These factors involve less favorable reduction of hydrogen to H2 and strong binding affinities between the Fe open-metal site and reduction intermediates, effectively curtailing desorption processes of closed-shell intermediates such as formic acid (HCOOH), formaldehyde (CH2O), and methanol (CH3OH), to lead to selective CH4 formation.

Keywords

CO2 Reduction
Density Functional Theory
Metal Organic Framework

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Information that supports the main text.
Actions
Title
Cartesian Coordinates
Description
Optimized Cartesian Coordinates for the reduction intermediates on the X-MOF-74 clusters.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.