Abstract
Cation doping is an effective strategy for improving the cyclability of layered oxide cathode materials through suppression of phase transitions in the high voltage region (>~4.0V). In this study we choose Mg and Sc as representative dopants in P2- Na0.67Ni0.33Mn0.67O2. While both dopants have a positive effect on the cycling stability, they are found to influence the properties in the high voltage regime in different ways. Through a combination of RIXS, XRD, XAS, PDF analysis, and DFT, we show that it is more than just suppression of the P2 to O2 phase transition that is critical for promoting the favorable properties, and that the interplay between Ni and O activity are also critical aspects that dictate the performance. With Mg doping, we could enhance the Ni activity while simultaneously suppressing the O activity. This is surprising because it is in contrast to what has been reported in other Mn-based layered oxides where Mg is known to trigger oxygen redox. We address this contradiction by proposing a competing mechanism between Ni and Mg that impacts differences in O activity in Na0.67MgxNi0.33-xMn0.67O2 (x<0<0.33). These findings provide a new direction in understanding the effects of cation doping on the electrochemical behavior of layered oxides.
Supplementary materials
Title
Supporting information: Competing mechanisms determine oxygen redox in doped Ni-Mn based layered oxides for Na-ion batteries
Description
Supporting information: Competing mechanisms determine oxygen redox in doped Ni-Mn based layered oxides for Na-ion batteries
Actions