Metallomimetic C-F activation catalysis by simple phosphines

22 September 2023, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Delivering metallomimetic reactivity from simple p-block compounds is highly desirable in the search to replace expensive, scarce precious-metals by cheap and abundant elements in catalysis. This contribution demonstrates that metallomimetic catalysis, involving facile redox cycling between the P(III) and P(V) oxidation states, is possible using only simple, cheap and readily available trialkylphosphines with no need for complex ligand architectures or external oxidising/reducing agents. Hydrodefluorination and aminodefluorination of a range of fluoroarenes was realised with good to very good yields under mild conditions. Experimental and computational mechanistic studies show that the phosphines undergo oxidative addition of the fluoroaromatic substrate, via a Meisenheimer-like transition state, to form a fluorophosphorane. This undergoes a pseudo-transmetallation step with a silane, via initial fluoride transfer from P to Si, to give experimentally observed phosphonium ions. Hydride transfer from a hydridosilicate counterion then leads to a hydridophosphorane, which undergoes reductive elimination of the product to re-form the phosphine catalyst. This behaviour is analogous to many classical transition-metal catalysed reactions and so is a rare example of both functional and mechanistically metallomimetic behaviour in catalysis by a main-group element system. Crucially, the reagents used are cheap, readily available commercially and easy to handle, making these reactions a realistic prospect in a wide range of academic and industrial settings.

Keywords

Metallomimetic catalysis
Phosphorus chemistry
Mechanism
Hydrodefluorination
Aminodefluorination
DFT studies

Supplementary materials

Title
Description
Actions
Title
Supporting information
Description
Supporting information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.