Abstract
Compositional analysis (CA)—identification and quantification of the system constituents—is the most fundamental and decisive approach to investigate the system of interest. Pyrolysis mass spectrometry (MS) with millidalton resolution is very effective for chemical identification and directly applicable to polymer materials regardless of their solubilities; however, it is less helpful for quantification especially when the references, i.e., pure constituents, are unknown, non-isolable and thus unpreparable. To compensate this weakness, herein we propose reference-free quantitative mass spectrometry (RQMS) with enhanced quantification accuracy assisted by synchronized thermogravimetry (TG). The key to success is the conversion of MS signal intensities of pyrolyzed fragments into weight abundances via mathematically incorporated TG data. In a benchmark test using ternary polymer systems, this new framework named TG-RQMS demonstrates accurate CA within ±1 wt% errors without using any knowledge nor spectra of the references. This simple yet accurate and versatile CA method would be an invaluable tool to investigate polymer materials whose composition is hardly accessible via other analytic methods.
Supplementary materials
Title
Supporting Information
Description
Materials, Methods and Supplementary Figures
Actions
Title
Data S1
Description
TG and MS dataset for Fig. 3
Actions
Title
Data S2
Description
TG and MS dataset for Fig. S2
Actions