Abstract
Contemporary materials discovery requires intricate sequences of synthesis, formulation and characterization that often span multiple locations with specialized expertise or instrumentation. To accelerate these workflows, we present a cloud-based strategy that enables delocalized and asynchronous design–make–test–analyze cycles. We showcase this approach through the exploration of molecular gain materials for organic solid-state lasers as a frontier application in molecular optoelectronics. Distributed robotic synthesis and in-line property characterization, orchestrated by a cloud-based AI experiment planner, resulted in the discovery of 21 new state-of-the-art materials. Automated gram-scale synthesis ultimately allowed for the verification of best-in-class stimulated emission in a thin-film device. Demonstrating the asynchronous integration of five laboratories across the globe, this workflow provides a blueprint for delocalizing – and democratizing – scientific discovery.
Supplementary materials
Title
Supplementary Information
Description
Experimental procedures, compound characterization data, computational workflows.
Actions