Solution-driven processing of calcium sulfate: the mechanism of the reversible transformation of gypsum to bassanite in brines

12 September 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Here, we show that calcium sulfate dihydrate (gypsum) can be directly, rapidly and reversibly converted to calcium sulfate hemihydrate (bassanite) in high salinity solutions (brines). The optimum conditions for the efficient production of bassanite in a short time (< 5 min) involve the use of brines with [NaCl] > 4 M and maintaining a temperature, T > 80 °C. When the solution containing bassanite crystals is cooled down to around room temperature, eventually gypsum is formed. When the temperature is raised again to T > 80 °C, bassanite is rapidly re-precipitated. This contrasts with the typical behaviour of the bassanite phase in low salt environments. Traditionally, hemihydrate is obtained from gypsum through a solid state thermal treatment at 150 °C < T < 200 °C, to remove some of the structural water. This is because, bassanite is considered to be metastable with respect to gypsum and anhydrite in aqueous solutions, and therefore gypsum-to-bassanite conversion should not occur in water. Interestingly, the high-salinity transformation of gypsum-to-bassanite has been reported by many authors and used in practice for several decades, although its very occurrence actually contradicts numerical thermodynamic predictions regarding solubility of calcium sulfate phases. By following the evolution of crystalline phases with in situ and time-resolved X-ray diffraction/scattering and Raman spectroscopy, we demonstrated that the phase stability in brines at elevated temperatures is inaccurately represented in the thermodynamic databases. Most notably for [NaCl] > 4 M, and T > 80 °C gypsum becomes readily more soluble than bassanite, which induces the direct precipitation of the latter from gypsum. The fact that these transformations are controlled by the solution provides extensive opportunities for precise manipulation of crystal formation. Our experiments confirmed that bassanite remained the sole crystalline structure for many hours before reverting into gypsum. This property is extremely advantageous for practical processing and efficient crystal extraction in industrial scenarios.

Keywords

calcium sulfate
bassanite
gypsum
scattering
crystallization
plaster of paris
saxs
electron microscopy
cryo

Supplementary materials

Title
Description
Actions
Title
SI file
Description
Additional information is provided in the SI document. It contains the following items: Materials and Methods; Supporting Figures S1 - S9; Supporting Tables S1 - S3; Supporting References.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.