Interfacial and intrinsic molecular effects on the phase separation/transition of heteroprotein condensates

05 September 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Liquid–liquid phase separation (LLPS) and droplet formation by LLPS are key concepts used to explain compartmentalization in living cells. Protein contact to a membrane surface is considered an important process for protein organization in a liquid phase or during transition to a solid or liquid dispersion state. The direct experimental comprehensive investigation is; however, not performed on the surface–droplet interaction and phase transition. In the present study, we constructed simple and reproducible experiments to analyze the structural transition of aggregates and droplets in an ovalbumin (OVA) and lysozyme (LYZ) complex on glass slides with various coatings. The difference in droplet-surface interaction may only be important in the boundary region between aggregates and droplets of a protein mixture, as shown in the phase diagram. Co-aggregates of OVA-LYZ changed to droplet-like circular forms during incubation. In contrast, free L-lysine resulted in the uniform droplet-to-solid phase separation at lower concentrations and dissolved any structures at higher concentrations. These results represent the first phase-diagram-based analysis of the phase transition of droplets in a protein mixture and a comparison of surface-surface and small molecular-droplet structure interactions.


Liquid–liquid phase separation
Egg protein
Surface effect on LLPS

Supplementary materials

Supplemental Figures
Supplemental Figures including complete phase diagram and circularity diagrams.


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.