Off-stoichiometry, Vacancy Trapping and Pseudo-irreversible First-cycle Capacity in LiNiO2

31 August 2023, Version 3
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We demonstrate that the ubiquitous off-stoichiometry of LiNiO2 in the form of Li_{1-z}Ni_{1+z}O2 slows the kinetics of the material both by diminishing the number of charge carriers and increasing the length of diffusion paths. Excess Ni in the Li layer, Ni_{Li}, exerts an attractive potential on Li vacancies, lowering their energy with respect to defect-free regions. This attractive field extends over a radius of two lattice sites and also considerably lowers the barrier for a Li vacancy to approach the defect, effectively making Ni_{Li} a sink for lithium vacancies. A similar argument can be made for divacancies, which are split by Ni_{Li} and pinned in the form of single vacancies. In addition to pinning effects, which could vary depending on the state of charge, Ni_{Li} also constitutes an obstacle to Li migration, because it is rather immobile and does not undergo site-exchange with an adjacent Li vacancy.

Keywords

cathode
Li-ion battery
DFT
LiNiO2
diffusion
defectivity

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.