Quantifying Concentration Distributions in Redox Flow Batteries with Neutron Radiography

25 August 2023, Version 1

Abstract

The continued advancement of electrochemical technologies requires an increasingly detailed understanding of the microscopic processes that control their performance, inspiring the development of new multi-modal diagnostic techniques. Here, we introduce a neutron imaging approach to enable the quantification of spatial and temporal variations in species concentrations within an operating redox flow cell. Specifically, we leverage the high attenuation of redox-active organic materials (high hydrogen content) and supporting electrolytes (boron-containing) in solution and perform subtractive neutron imaging of active species and supporting electrolyte. To resolve the concentration profiles across the electrodes, we employ the in-plane imaging configuration and correlate the concentration profiles to cell performance with polarization measurements under different operating conditions. Finally, we use time-of-flight neutron imaging to deconvolute concentrations of active species and supporting electrolyte during operation. Using this approach, we evaluate the influence of cell polarity, voltage bias, and flow rate on the concentration distribution within the flow cell and correlate these with the macroscopic performance, thus obtaining an unprecedented level of insight into reactive mass transport. Ultimately, this diagnostic technique can be applied to a range of (electro)chemical technologies and may accelerate the development of new materials and reactor designs.

Keywords

mass transfer
electrochemical energy storage
neutron imaging
redox flow batteries
operando diagnostics
concentration mapping.

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
The supplementary information contains a detailed description of the image processing to extract concentration maps from neutron radiographs, an additional experiment at lower flow rates, current and voltage vs. time curves for all experiments, and capacity vs. time for all experiments.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.