Free and Internal Energies for the Adsorption of Short Alkanes into the Zeolite SSZ-13 from Ab Initio Molecular Dynamics Simulations

22 August 2023, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Electronic structure calculations have become a valuable tool in understanding chemical reactions of hydrocarbons in zeolite pores. However, commonly applied approaches to calculate free energies based on static electronic structure calculations significantly overestimate the entropic penalty for molecular adsorption into zeolite pores. Here, we use ab initio molecular dynamics (AIMD) simulations to model the adsorption of methane, ethane, and propane to purely siliceous and protonated SSZ-13. In our analyses we focus on the internal and Helmholtz free energies of adsorption of each molecule and compare our results to various approaches for the calculation of free energies based on static calculations. We find that only an approach that retains two thirds of the translational entropy of the adsorbate upon adsorption compares favorably with AIMD simulations. However, comparison to experimental measurements of Gibbs free energies of adsorption reported in the literature implies that we might not have captured the full complexity of alkane adsorption in our model. We expect that results in this work will help to develop a better understanding of alkane adsorption in zeolites, and that the provided data will serve as a benchmark for free energy calculations of alkane adsorption in zeolites in the future.

Keywords

zeolites
alkanes
ab initio molecular dynamics
adsorption

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.