Direct Decarboxylation of Trifluoroacetates Enabled by Iron Photocatalysis

16 August 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Trifluoroacetates are the most abundant and accessible sources of trifluoromethyl groups, which are key components in pharmaceuticals and agrochemicals. The generation of trifluoromethyl reactive radicals from trifluoroacetates requires their decarboxylation, which is hampered by their high oxidation potential. This constitutes a major challenge for redox-based methods, because of the need to pair the redox potentials with trifluoroacetate. Here we report a strategy based on iron photocatalysis to promote the direct photodecarboxylation of trifluoroacetates that displays reactivity features that escape from redox limitations. Our synthetic design has enabled the use of trifluoroacetates for the trifluoromethylation of more easily oxidizable organic substrates, offering new opportunities for late-stage derivatization campaigns using chemical feedstocks, Earth-abundant catalysts, and visible-light.


Earth-abundant metal catalysis
radical chemistry

Supplementary materials

Supporting information
Experimental procedures, characterization data, and mechanistic experiments.


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.