Alternative Concept of One-Dimensional Superconductivity – Key Role of Defects Revealed by Quantum Chemical Calculations of Lead Apatite

14 August 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Doped lead apatite has been recently reported to feature superconductivity at room temperature and ambient pressure, which may have huge impact on the progress of the humanity in general. The first principle calculations, aiming at understanding the reasons for such behavior, suggest that reduced form of undoped and copper-doped lead apatite contain one dimensional channels, which are free of ions, but with electrostatic potential inside providing conditions for unimpeded electron mobility, potentially leading to superconductivity. Key aspect is that channels are surrounded by lead cations, which generate the necessary electrostatic field but due to their high atomic mass have reduced mobility and do not block the channels even at ambient temperature. Our observations on the modeled structures allowed us to present an alternative concept for features, giving rise of the superconductivity based on chemical understanding of the structure and frontier orbital of the material.


density functional theory
lead apatite
frontier orbitals


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.