Region of Interest Selection for GC×GC-MS Data using a Pseudo Fisher Ratio Moving Window with Connected Components Segmentation

07 August 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Comprehensive two-dimensional gas chromatography mass spectrometry (GC×GC-MS) data present several challenges for analysis largely because chemical factors drift along the chromatographic modes across different chromatographic runs, and there is frequently a lack of reliable molecular ion measurements with which to align data across multiple samples. Tensor decomposition techniques such as Parallel Factor Analysis (PARAFAC2/PARAFAC2×N) allow analysts to deconvolve closely eluting signals for quantitative and qualitative purposes. These techniques make relatively few assumptions about chromatographic peak shapes or the relative abundance of noise and allow for highly accurate representations of the underlying chemical phenomena using well-characterized and scrutinized principles of chemometrics. However, expert intervention and supervision is required to select appropriate Regions of Interest (ROI) and numbers of chemical components present in each ROI. We previously reported an automated ROI selection algorithm for GC-MS data in Giebelhaus et al. where we observed the ratio of the first and second eigenvalues within a moving window across the entire chromatogram. Here, we present an extension of this work to automatically detect ROIs in GC×GC-MS chromatograms, while making no assumptions about peak shape. First we calculate the probabilities of each acquisition being in a ROI, then apply connected components segmentation to discretize the regions of interest. For sparse chromatograms we found the algorithm detected spurious peaks. To address this, we implemented an iterative ROI selection process where we autoscaled the moving window to the standard deviation of the noise from the previous iteration. Using three user-defined parameters, we generated informative ROIs on a wide range of GC×GC-TOFMS chromatograms.


Comprehensive two-dimensional gas chromatography
Region of interest selection
Fisher Ratio Analysis

Supplementary materials

Supporting Information for: “Region of Interest Selection for GC×GC-TOFMS Data using a Pseudo Fisher Ratio Moving Window with Connected Components Segmentation”
Supporting Figures for “Region of Interest Selection for GC×GC-TOFMS Data using a Pseudo Fisher Ratio Moving Window with Connected Components Segmentation”.


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.